use Physics::Unit;
use Physics::Measure :ALL;

reset rounding
$Physics: :Measure: :round-val = Nil;

OPTION A: 2)
< /-1m (SOUTH-FACING)

(3029¢,) (q k\Jk/mZ/om’> (1) 20%= (§58/YEA

OPTION B: e 1m? (DOLUNWARD)
'. n\ '| -

(8029¢) (s‘“am“"&%aw)"(' o) 2072 @ ?2 MILUON/yeng

SOLAR ENERGY TiP: TO MAXIMIZE SUN EXPOSURE, ALWAYS ORIENT YOUR
PANELS DOWNWARD AND INSTALL THEM ON THE SURFACE OF THE SUN.

Option A - on the roof

To break this down into pieces, we have:

#(0.20 S/kwh) * ((4kWh / m2) per day) * (1 m2) * 20%
= —eeee e - ——— _
[1] [2] [3] [4] [5]

()

#[1] Dollars per KkWh

First we need to create a custom Unit and a custom Measure type
we do not have currency units (yet) so I will ignore the USD currency in the definition

Unit.new(defn => '1 / kWh', names => ['S/kWh']); #dd GetUnit('S/kwh');
And a new custom measurement type...

class DollarPerKWH is Measure {
has $.units where *.name eq ('S$/kWh').any;

}

And then link them with Get Measurement Unit...
GetMeaUnit('$/kWh') .NewType('DollarPerKWH');

my Scost-per-kwh = '0.2 $/kwh';

0.2$/kWh

#[2] Insolation

my Senergy-per-area = (:2'4 kWh/m2");

4kWh/m2

Senergy-per-area. name;

Physics: :Measure::Insolation

#[3] Irradiance

my S$Spower-per-area-on-roof = $energy-per-area / Eg'l day';

0.000046W/m"2

Spower-per-area-on-roof.units.type;

Irradiance

#[4] we can just do 1 m2 like this...
say '1 m2';

1m"2

#[5] and a percent % like this...

say E§'20 %' #libra format EE" always needs a space between the number and the unit string
20%

Putting it all together:

my Searnings-per-year-on-roof = S$cost-per-kwh * ($power-per-area-on-roof * Eg'l m2') * EE'ZO &' * Eg'l year';

58.4401)

the @ indicates that the result is dimensionless

Option B - on the sun

To break this one down into pieces, we have:

#(0.20 S/kwh) * ((Sun Luminosity) / (Sun Area)) * (1 m2) * 20%
mmmee e e —— R
[1] [2] [3] [4] [5]

()

set rounding to cope with big values
S$Physics: :Measure: :round-val = 100;

100

#[2] we can use the postfix style for SI units

my S$solar-luminosity = 3.828e26W;

382800000000000026004684800W

$solar-luminosity.norm; # and we can auto normalize SI units to the best SI prefix

400YW

#[3] and the area (also from https://en.wikipedia.org/wiki/Sun)

my S$solar-area = '6.09e12 km2';
$solar-area.in: <m2>;

6090000000000000000m™2

$solar-area.in: <peta m2>;

6100peta m2

#combining [2] and [3] gives:

my S$Spower-per-area-on-sun = $solar-luminosity / $solar-area;

62857100W/m"2

Spower-per-area-on-sun.in: <kW/m”"2>;

62900kW/m"2

Putting it all together:

my Searnings-per-year-on-sun = $cost-per-kwh * ($power-per-area-on-sun ¥* Eg'l m2') * EE'ZO ' * Eg'l year';

793448228571001)

(Searnings-per-year-on-sun.value / 1 000 000 000 000).fmt("%d billion USD per year");

79 billion USD per year

Conclusion (I)

The sharp eyed reader will note that | then felt duty bound to double check my result, since this is adrift of the 22 million USD per year in Randall's comic.

To review the calcs, I thought an order of magnitude approach would help:

sub order-of-magnitude($number is copy) {
return Nil if Snumber == 0; # Order of magnitude undefined for 0
return floor(loglO(S$Snumber).Int);

}

&order-of-magnitude

my S$Lsol-oom = order-of-magnitude(+$solar-luminosity);

26

my SAsol-oom = order-of-magnitude(+($solar-area.in: <m2>));

18

my Sppa-sun-oom = order-of-magnitude(+$power-per-area-on-sun);

check if oom calc is close enough

(Sppa-sun-oom - (SLsol-oom - SAsol-oom)) <= 1;

True

e since many factors are invariant $cost-per-kwh, (21 m2', (23'20 %', [@)'1 year' we can set them aside
e the main driver of the result is then the power-per-area

get oom for ppa sun vs ppa roof

my Sppa-roof-oom = order-of-magnitude(+$power-per-area-on-roof);

-4

my S$Ssun-roof-power-ratio = $power-per-area-on-sun / $power-per-area-on-roof;

1357714285700

my S$Ssun-roof-power-ratio-oom = order-of-magnitude(+$sun-roof-power-ratio);

12

get oom for epy sun vs ppa roof

my S$sun-roof-epy-ratio = S$earnings-per-year-on-sun / $$earnings-per-year-on-roof;

1357714285700

my Ssun-roof-epy-ratio-oom = order-of-magnitude(+$sun-roof-epy-ratio);

12

check if oom calc is close enough

($sun-roof-epy-ratio-oom - $sun-roof-power-ratio-oom) <= 1;

True

e can also visually check "under the hood" , and extract the ratio of value by hand since the units are the same:

dd $power-per-area-on-sun;

Irradiance $power-per-area-on-sun = Physics::Measure::Irradiance.new(value => 62857142.85714286e0, units => Unit.new(factor => 1, offset => 0, defn => 'W / m"2', type => Irradiance,
dims => [0,1,-3,0,0,0,0,0], dmix => ("W"=>1,"m"=>-2).MixHash, names => ['W/m"2']);

, error => Error)

dd S$Spower-per-area-on-roof;

Irradiance S$power-per-area-on-roof = Physics::Measure::Irradiance.new(value => <1/21600>, units => Unit.new(factor => 1, offset => 0, defn => 'W / m"2', type => Irradiance,
dims => [0,1,-3,0,0,0,0,0], dmix => ("W"=>1,"m"=>-2).MixHash, names => ['W/m"2']);

;, error => Error)

62857142.85714286e0 / <1/21600>

1357714285714.286

Conclusion (ll)

So, | would say, that the right answer is 79 billion USD per year and that my math beats Randall's.
BUT - | am too conscious that | may have made an error - either in these calcs or in the Physics::Measure code.
In the spirit of check your results and show your workings | think | am partly protected by the grammar school code of Physics marking ... perhaps this only warrants 6/10 if the result is wrong!

So, PLEASE do feel free to check my results and let me know what you think!

